Gaussian Process Latent Variable Alignment Learning
نویسندگان
چکیده
We present a model that can automatically learn alignments between high-dimensional data in an unsupervised manner. Learning alignments is an ill-constrained problem as there are many different ways of defining a good alignment. Our proposed method casts alignment learning in a framework where both alignment and data are modelled simultaneously. We derive a probabilistic model built on non-parametric priors that allows for flexible warps while at the same time providing means to specify interpretable constraints. We show results on several datasets, including different motion capture sequences and show that the suggested model outperform the classical algorithmic approaches to the alignment task.
منابع مشابه
Learning Alignments from Latent Space Structures
In this paper we present a model that is capable of learning alignments between high-dimensional data by exploiting low-dimensional structures. Specifically, our method uses a Gaussian process latent variable model (GP-LVM) to learn alignments and latent representations simultaneously. The results show that our model performs alignment implicitly and improves the smoothness of the low dimension...
متن کاملLearning GP-BayesFilters via Gaussian process latent variable models
GP-BayesFilters are a general framework for integrating Gaussian process prediction and observation models into Bayesian filtering techniques, including particle filters and extended and unscented Kalman filters. GPBayesFilters have been shown to be extremely well suited for systems for which accurate parametric models are difficult to obtain. GP-BayesFilters learn non-parametric models from tr...
متن کاملStochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints
Gaussian process latent variable models (GPLVMs) are a probabilistic approach to modelling data that employs Gaussian process mapping from latent variables to observations. This paper revisits a recently proposed variational inference technique for GPLVMs and methodologically analyses the optimality and different parameterisations of the variational approximation. We investigate a structured va...
متن کاملLearning for Larger Datasets with the Gaussian Process Latent Variable Model
In this paper we apply the latest techniques in sparse Gaussian process regression (GPR) to the Gaussian process latent variable model (GPLVM). We review three techniques and discuss how they may be implemented in the context of the GP-LVM. Each approach is then implemented on a well known benchmark data set and compared with earlier attempts to sparsify the model.
متن کاملUnsupervised Learning with Imbalanced Data via Structure Consolidation Latent Variable Model
Unsupervised learning on imbalanced data is challenging because, when given imbalanced data, current model is often dominated by the major category and ignores the categories with small amount of data. We develop a latent variable model that can cope with imbalanced data by dividing the latent space into a shared space and a private space. Based on Gaussian Process Latent Variable Models, we pr...
متن کامل